Visualized: Battery Vs. Hydrogen Fuel Cell
Connect with us

Energy

Visualized: Battery Vs. Hydrogen Fuel Cell

Published

on

Subscribe to the Elements free mailing list for more like this

hydrogen fuel cell vs battery EV/></p>
							
							</span>

											</header>

					
					<div class=

Battery Electric Vs. Hydrogen Fuel Cell

This was originally posted on Elements. Sign up to the free mailing list to get beautiful visualizations on natural resource megatrends in your email every week.

Since the introduction of the Nissan Leaf (2010) and Tesla Model S (2012), battery-powered electric vehicles (BEVs) have become the primary focus of the automotive industry.

This structural shift is moving at an incredible rate—in China, 3 million BEVs were sold in 2021, up from 1 million the previous year. Meanwhile, in the U.S., the number of models available for sale is expected to double by 2024.

In order to meet global climate targets, however, the International Energy Agency claims that the auto industry will require 30 times more minerals per year. Many fear that this could put a strain on supply.

“The data shows a looming mismatch between the world’s strengthened climate ambitions and the availability of critical minerals.”
– Fatih Birol, IEA

Thankfully, BEVs are not the only solution for decarbonizing transportation. In this infographic, we explain how the fuel cell electric vehicle (FCEV) works.

How Does Hydrogen Fuel Cell Work?

FCEVs are a type of electric vehicle that produces no emissions (aside from the environmental cost of production). The main difference is that BEVs contain a large battery to store electricity, while FCEVs create their own electricity by using a hydrogen fuel cell.

Major BEV ComponentsMajor FCEV Components
BatteryBattery
Onboard chargerHydrogen fuel tank
Electric motorFuel cell stack
Electric motor
Exhaust

Let’s go over the functions of the major FCEV components.

Battery

First is the lithium-ion battery, which stores electricity to power the electric motor. In an FCEV, the battery is smaller because it’s not the primary power source. For general context, the Model S Plaid contains 7,920 lithium-ion cells, while the Toyota Mirai FCEV contains 330.

Hydrogen Fuel Tank

FCEVs have a fuel tank that stores hydrogen in its gas form. Liquid hydrogen can’t be used because it requires cryogenic temperatures (−150°C or −238°F). Hydrogen gas, along with oxygen, are the two inputs for the hydrogen fuel cell.

Fuel Cell Stack and Motor

The fuel cell uses hydrogen gas to generate electricity. To explain the process in layman’s terms, hydrogen gas passes through the cell and is split into protons (H+) and electrons (e-).

Protons pass through the electrolyte, which is a liquid or gel material. Electrons are unable to pass through the electrolyte, so they take an external path instead. This creates an electrical current to power the motor.

Exhaust

At the end of the fuel cell’s process, the electrons and protons meet together and combine with oxygen. This causes a chemical reaction that produces water (H2O), which is then emitted out of the exhaust pipe.

Which Technology is Winning?

As you can see from the table below, most automakers have shifted their focus towards BEVs. Notably missing from the BEV group is Toyota, the world’s largest automaker.

FCEVs struggling to build momentum

Hydrogen fuel cells have drawn criticism from notable figures in the industry, including Tesla CEO Elon Musk and Volkswagen CEO Herbert Diess.

Green hydrogen is needed for steel, chemical, aero,… and should not end up in cars. Far too expensive, inefficient, slow and difficult to rollout and transport.
– Herbert Diess, CEO, Volkswagen Group

Toyota and Hyundai are on the opposing side, as both companies continue to invest in fuel cell development. The difference between them, however, is that Hyundai (and sister brand Kia) has still released several BEVs.

This is a surprising blunder for Toyota, which pioneered hybrid vehicles like the Prius. It’s reasonable to think that after this success, BEVs would be a natural next step. As Wired reports, Toyota placed all of its chips on hydrogen development, ignoring the fact that most of the industry was moving a different way. Realizing its mistake, and needing to buy time, the company has resorted to lobbying against the adoption of EVs.

Confronted with a losing hand, Toyota is doing what most large corporations do when they find themselves playing the wrong game—it’s fighting to change the game.
– Wired

Toyota is expected to release its first BEV, the bZ4X crossover, for the 2023 model year—over a decade since Tesla launched the Model S.

Challenges to Fuel Cell Adoption

Several challenges are standing in the way of widespread FCEV adoption.

One is in-car performance, though the difference is minor. In terms of maximum range, the best FCEV (Toyota Mirai) was EPA-rated for 402 miles, while the best BEV (Lucid Air) received 505 miles.

Two greater issues are 1) hydrogen’s efficiency problem, and 2) a very limited number of refueling stations. According to the U.S. Department of Energy, there are just 48 hydrogen stations across the entire country, with 47 located in California, and 1 located in Hawaii.

On the contrary, BEVs have 49,210 charging stations nationwide, and can also be charged at home. This number is sure to grow, as the Biden administration has allocated $5 billion for states to expand their charging networks.

Subscribe to Visual Capitalist
Click for Comments

Energy

Visualizing the New Era of Energy

This infographic explores the exponential growth of the technologies that are shaping the new era of energy.

Published

on

The following content is sponsored by Surge Battery Metals
new era of energy

The New Era of Energy

Energy is the pulse of our daily lives, powering everything from our homes to our cars and electronic gadgets. 

Over the last two decades, there’s been an ongoing shift in how we produce and consume energy, largely due to rising climate awareness among both governments and consumers.

The above infographic from Surge Battery Metals highlights the increasing uptake of clean energy technologies and explains the need for the raw materials that power them. This is part two of three infographics in the Energy Independence Series.

The Growth of Clean Energy

Government policies, falling production costs, and climate consciousness have all contributed to the exponential adoption of green energy technologies. 

For example, only a few countries were actively encouraging EV adoption a decade ago, but today, millions of consumers can take advantage of EV tax concessions and purchase subsidies with governments committed to phasing out internal combustion engines. Partly as a result, electric vehicles (EVs) are well on their way to mainstream adoption. 

Here’s a look at how the number of electric cars on the road has grown since 2011, including both battery EVs and plug-in hybrids:

Country/Region2011 Electric Car Stock2021 Electric Car Stock
China10,0007,800,000
Europe20,0005,500,000
U.S.20,0002,000,000
Other20,0001,100,000
Total70,00016,400,000

In 2021, the global electric car stock stood at around 16.4 million cars, up by around 60% from 2020. EV sales also more than doubled to reach 6.8 million units.

Alongside electric cars, renewable energy technologies are also on the road to dominating the global energy mix. In 2021, renewables accounted for 16% of global energy consumption—up from just 8% in 2000. This growth is largely down to solar and wind energy, which made up the majority of new renewable capacity additions:

YearNet Renewable Capacity Additions
(gigawatts)
Solar PV
% Share
Wind
% Share
2011109.428%36%
2012116.425%40%
2013122.930%27%
2014135.130%37%
2015159.731%42%
2016171.344%30%
2017174.855%27%
2018179.354%28%
2019193.856%31%
2020280.248%40%
2021288.954%31%

Every year since 2018, solar and wind have accounted for more than 80% of new renewable capacity additions, contributing to the record-breaking growth of clean energy. 

Despite this growth, the IEA projects that both EVs and renewables need to expand their reach significantly if the world is to achieve net-zero emissions by 2050. Electric car sales need to hit 56 million units by 2030—more than eight times the 6.6 million cars sold in 2021. Similarly, solar PV and wind additions need to quadruple by 2030 from 2021 levels. 

This new era of clean energy will require an increase in the supply of EVs, solar panels, wind turbines, and batteries, which translates into more demand for the unnoticed raw materials behind these technologies.

The Metals Behind Clean Energy

From copper in cables to lithium in batteries, some metals are key to building and growing clean energy capacity. 

In fact, for every megawatt of capacity, solar photovoltaic farms use more than 2,800 kg of copper according to the IEA. Offshore wind farms, which are connected to land by massive undersea cables, use even more copper at 8,000 kg per megawatt. Similarly, electric cars use lithium-ion batteries, which are composed of a variety of minerals, including graphite, copper, nickel, and lithium.

While the demand for these clean energy minerals is skyrocketing, their supply remains a concern, with China dominating the supply chains. In the new era of energy, domestic supplies of these materials will be key to ensuring energy independence and lower reliance on foreign imports.

In the next part of the Energy Independence Series sponsored by Surge Battery Metals, we will explore how the U.S. can build an Energy-Independent Future by developing domestic raw material and battery supply chains.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Energy

Visualizing U.S. Greenhouse Gas Emissions by Sector

The U.S. emits about 6 billion metric tons of greenhouse gases a year. Here’s how these emissions rank by sector.

Published

on

The following content is sponsored by National Public Utilities Council.


Visualizing U.S. Emissions by Sector

Decarbonization efforts in the U.S. are ramping up, and in 2020, greenhouse gas (GHG) emissions were lower than at any point during the previous 30 years.

However there’s still work to be done before various organizations, states, and nationwide targets are met. And when looking at GHG emissions by sector, the data suggests that some groups have more work cut out for them than others.

This graphic from the National Public Utilities Council provides the key data and trends on the total emissions by U.S. sector since 1990.

The Highest Emitting Sectors

Collectively, the U.S. emitted 5,981 million metric tons (MMT) of CO2-equivalent (CO2e) emissions in 2020, which rose 6.1% in 2021.

Here’s how the various sectors in the U.S. compare.

Sector2020 GHG emissions, MMT CO2ePercentage of Total
Transportation1,627.627%
Electricity generation1,482.625%
Industry1,426.224%
Agriculture635.111%
Commercial425.37%
Residential362.06%
U.S. territories23.0<1%

The transportation sector ranks highest by emissions and has been notably impacted by the COVID-19 pandemic, which is still affecting travel and supply chains. This has led to whipsawing figures during the last two years.

For instance, in 2020, the transportation sector’s emissions fell 15%, the steepest fall of any sector. But the largest increase in emissions in 2021 also came from transportation, which is largely credited to the economic and tourism recovery last year.

Following transportation, electricity generation accounted for a quarter of U.S. GHG emissions in 2020, with fossil fuel combustion making up nearly 99% of the sector’s emissions. The other 1% includes waste incineration and other power generation technologies like renewables and nuclear power, which produce emissions during the initial stages of raw material extraction and construction.

Decarbonizing the Power Sector

The Biden Administration has set a goal to make the U.S. power grid run on 100% clean energy by 2035—a key factor in achieving the country’s goal of net zero emissions by 2050.

Industrial factories, commercial buildings, and homes all consume electricity to power their machinery and appliances. Therefore, the power sector can help reduce their carbon footprint by supplying more clean electricity, although this largely depends on the availability of infrastructure for transmission.

Here’s how sectors would look if their respective electricity end-use is taken into account

SectorEmissions by Sector % of Total
Agriculture11%
Transportation27%
Industry30%
Residential & Commercial30%

Percentages may not add up to 100% due to independent rounding

With these adjustments, the industrial, commercial, and residential sectors experience a notable jump, and lead ahead of other categories

Today, the bulk of electricity generation, 60%, comes from natural gas and coal-fired power plants, with nuclear, renewables, and other sources making up 40% of the total.

Energy Source2020 Electric generation, billion kWhShare of total
Natural Gas1,57538.3%
Coal89921.8%
Nuclear77818.9%
Wind3809.2%
Hydropower2606.3%

However, progress and notable strides have been made towards sustainable energy. In 2021, renewables accounted for one-fifth of U.S. electricity generation, roughly doubling their share since 2010.

Coal’s share as a source of electric power has dropped dramatically in recent years. And partially as a result, electricity generation has seen its portion of emissions successfully decrease by 21% , with overall emissions falling from 1,880 million metric tons of CO2 to 1,482 million metric tons.

How Utilities Can Lead the Way

Should these trends persist, the electricity generation sector has a chance to play a pivotal role in the broader decarbonization initiative. And with the bulk of electricity generation in the U.S. coming from investor-owned utilities (IOUs), this is a unique opportunity for IOUs to lead the transition toward cleaner energy.

The National Public Utilities Council is the go-to resource to learn how utilities can lead in the path towards decarbonization.

Subscribe to Visual Capitalist
Click for Comments

You may also like

Subscribe

Continue Reading

Subscribe

Popular